
Demand-Driven Execution
Abstract interpretation without widening

Proposer: Principal Investigator:Robert Zhang Prof. Scott Smithjzhan239@jhu.edu scott@cs.jhu.edurobertzhang.vercel.app cs.jhu.edu/~scott

1 Abstract

Abstract interpretation is a powerful technique to statically derive program properties that areuseful for debugging and optimization. Many such systems have been developed over the years,but a compromise has always had to be made between precision and performance. That is, themore accurate the result of a static analysis, the more program paths the analyzer must spendtime exploring. For tools that allow some loss of precision in return for a reasonable performance,a widening step is typically required to repeatedly pass over the program to coarsen the derivedresult until termination.We propose a novel execution technique - Demand-Driven Execution1 - that fundamentallyeliminates the need for such a process, promising higher precision and performance while guar-anteeing termination and soundness . In addition, it inherently supports higher-order program-ming and has the capacity to generate induction principles for free, making it more akin to atheorem prover, only fully automated. At the heart of our approach is laziness, simulating a call-stack to defer the evaluation of function arguments to only when needed, hence “demand-driven.”This work is implemented in OCaml and is being formally verified in Coq.To our knowledge, no prior work has been done in this direction and it is our hope that ourwork catalyzes further innovations in program analysis and automated reasoning.

2 Key Components and Progress

This project roughly divides into two parts: a concrete interpreter demonstrating the essenceof our approach and an abstract interpreter that is the crux of this work, whose qualities areexplained above.The concrete interpreter was completed during the proposer’s collaboration with Prof. Smithwhile they were an undergraduate. It works atop a functional programming language we de-signed and implemented in OCaml, extending lambda calculus with integer arithmetic, condition-als, records, and assertions. There is also a test suite containing tests to verify outputs againstthose of two kinds of classic interpreters - substitution-based and environment-based.A working implementation of the abstract interpreter was also done before the proposerstarted their master’s. Exactly as the theory indicates, our tool produces the expected results ontest programs. A test framework containing unit tests and property-based tests has been estab-lished. Benchmarks against classic forward abstract interpreters were also set up and substantialwork will soon ensue on this front. In the process of implementing the abstract interpreter, theproposer also uncovered a few critical bugs/inconsistencies in the written theory and helpedrefine it. Lately, the proposer implemented a translation from the analysis result to constrainedHorn clauses (CHCs) so that a CHC solver (e.g., Spacer) can derive a more intuitive representationof the result, improving the user experience. See Section 4 for an example.Across both parts, the proposer has been working on mechanizing their semantics and for-mally proving important properties about them in Coq. Once done, such machine-checked cor-rectness proofs will gain us unparalleled confidence in our tool.
1https://github.com/JHU-PL-Lab/dde

1

mailto:jzhan239@jhu.edu
mailto:scott@cs.jhu.edu
https://robertzhang.vercel.app
https://www.cs.jhu.edu/~scott
https://github.com/JHU-PL-Lab/dde


Over the course of this project starting in October 2022, ~3,900 lines of code have beenwritten (all by the proposer). The Coq verification itself is estimated to be at least 5,000 lines ofcode when completed.

3 A Clarifying Example

We now consider a simple example written in our OCaml-like language that illustrates the essenceof Demand-Driven Execution through our concrete interpreter. Section 4 will go over a morecomplex example to demonstrate the behavior of our abstract interpreter.
1 let a0 =
2 (* stack: [0] *)
3 (fun x -> fun y ->
4 x + y) 10 in
5 let b1 =
6 (* stack: [1; 0] *)
7 a0 20 in
8 b1

look up stack action
x [1; 0] pop
x [0] Ë
y [1; 0] Ë

Figure 1: A simple program and its variable lookups
The program to the left of Figure 1 performs two function applications consecutively to com-pute the sum of 10 and 20. The number attached to the name of these two applications, a0 and

b1, indicates the label our language parser assigns to their corresponding abstract syntax tree(AST) node. The point of having these labels is to push them onto the front of a list, representinga call stack, in the order of these function calls. As we shall see next, labels in the call stack willbe popped off one by one from the front of the list (last-in, first-out) as our concrete interpreterlooks up variables in function bodies. The comments on line 2 and 6 show the content of the callstack due to the two function applications.The chart to the right of the figure shows the steps the concrete interpreter takes to look up
x and y in the body of the function applied in a0. For the simpler case of y, the label at the top ofthe stack - 1 - happens to be the application that binds the parameter y to the value 20, so weare done. The right-hand side (the argument) of the application b1 - 20 - is the value for y.To look up the value of x, the top of the stack - 1 - does not correspond to an application thatbinds x. So, we pop off label 1 from the front and check the application with the next label - 0. Ithappens to be what we are looking for, an application that binds x to 10, so we are done.This mechanism forms the foundation for both our concrete and abstract interpreters. Ourlazy language semantics is in fact call by name in that a program expression and a call stackuniquely determine the execution. So, the execution can be cached, giving linear/polynomialtime complexity for free on programs like computing fibonacci numbers. Alternative, more stan-dard execution models either (evaluate and) substitute the argument for the function parameterat a function application, or save a mapping from the parameter to the argument in an environ-ment/closure for use at variable lookups.

4 A More Interesting Example

To help build intuition for how our abstract interpreter behaves, Figure 2 illustrates how eachstage of the project interprets an example recursive program.The program on the left recursively breaks down the argument into 1s and add them backup. Our concrete interpreter gives a result of 10, just as any sound interpreter would. On theother hand, our abstract interpreter summarizes the program output as a disjunction betweentwo possible values: 0, or 1 more than the previous computation. The ◦, a “stub”, representsthe disjunction itself. Translating such a data structure into CHCs and solving them with Spacer,
2



1 let id =
2 fun self -> fun n ->
3 if n = 0 then 0
4 else 1 +
5 self self (n - 1)
6 in id id 10

Concrete 10Abstract 0 | (◦ + 1)CHC solving ∀x. x ≥ 0

Figure 2: A recursive program and results from each stage of the project
we obtain a more intuitive summary indicating all natural numbers, which is more suitable to bepresented to users.There are a few things to note here. One, our abstract intrepretation is capable of reasoningover higher-order programs and statically inferring recursive properties, while traditional pro-gram analyses would go straight to widening a range for the output. Two, notice that neither theanalysis result nor the solver’s solution is as precise as it can be. For instance, it would be niceif the analysis could also infer an upper bound, i.e., ∀x. 0 ≤ x ≤ 10. This current limitation has todo with the fact that we have not performed call-return alignment to synchronize the reducing ofthe argument n with the addition of 1s. Without this step, the analysis simply cannot know thatthese two “loops” exactly correlate with each other. We plan to work on this as future work (seeMilestones).A challenge in working with Spacer has been that it does not produce least solutions (tightbounds) out of the box. Thus, our current approach is to utilize assertions built into our languageto help Spacer converge to the desired result. This is not shown in the example in Figure 2, butthe syntax of such an assertion is letassert x = e in x >= 0. where e is a placeholder for theexample program. Translated into a logical assertion, x >= 0 is equivalent to (assert (forall
((r Int)) (=> (P0 r) (>= r 0)))), in SMT-LIB. P0 is the logical predicate corresponding tothe analysis result of the program, 0 | (◦ + 1). An ambitious next step is to infer least solutionsinstead (see Milestones).

5 Milestones

Based on the current progress, major goals for the next year include but are not limited to thefollowing 5 milestones. More may arise as we go.
• Develop call-return alignment for reasoning over recursive programs so as to statically de-rive induction principles. Generate constrained Horn clauses to reflect such an alignment.This will allow us to have even richer analysis results and our tool to be utilized as a theoremprover, only fully automated.
• A comprehensive benchmark suite to compare the performance and precision of demand-driven concrete/abstract execution with classic forwardly running systems. These can in-clude those implemented by us or established tools that come with their own benchmarks,perhaps as part of publications. This will help demonstrate the strengths of our approachand identify areas for improvement.
• Leverage solvers like Spacer to infer least solutions on abstract interpretation results (af-ter they are translated into CHCs), obviating the need to manually specify assertions andfurther streamlining the user experience. The difficulty with this goal lies in how, to ourknowledge, no established CHC/SMT solver provides built-in support for computing leastsolutions. This is most likely due to insufficient demand from the users of these tools, whomostly use them to verify program properties, not to infer them.
• Formally verify both concrete/abstract interpreters in Coq. Interesting properties includesoundness of the latter relative to the former, equivalence of our demand-driven concrete

3



interpreter to classic concrete interpreters, and even the higher precision of our abstractinterpreter over classic systems. This is a significant undertaking that builds the kind oftrust in our tool we do not get solely with proofs on paper.
• The proposer is driven to broaden the use case of our tool beyond academic research. Along-term goal they have already been steadily working towards is to make the tool practicalfor general-purpose use through extending our programming language with more realisticfeatures, like records and assertions. In the future, they hope to apply our abstract inter-pretation technique to popular functional programming languages like OCaml. Going evenfurther, a challenging yet exciting problem to tackle is extending our technique to supportimperative languages like C++ and Rust, bringing over the benefits of our abstract inter-pretation model to an even wider audience.

4


	Abstract
	Key Components and Progress
	A Clarifying Example
	A More Interesting Example
	Milestones

